

ASSESSING AND EXPANDING CO₂ STORAGE CAPACITY IN DEPLETED AND NEAR-DEPLETED OIL RESERVOIRS

Prepared for:

International Symposium on Site Characterization for CO₂ Geological Storage (CO2SC)

Prepared by:

Vello A. Kuuskraa (<u>vkuuskraa@adv-res.com</u>) George J. Koperna (<u>gkoperna@adv-res.com</u>) Advanced Resources International, Inc.

March 20-22, 2006 Berkeley, CA

1500 40.6250 1500 57.7500 1500 29.5000 1500 78.2500 1500 77.2500 24.5000

OUTLINE FOR DISCUSSION

- 1. Attributes of Oil Reservoirs
- 2. Key Issues for Integrating CO₂
 Storage and CO₂-EOR
- 3. An Initial Perspective of CO₂
 Storage Capacity and CO₂-EOR
 Potential
- 4. Expanding CO₂ Storage
- 5. Summary

ATTRIBUTES OF OIL RESERVOIRS

Existing depleted and near-depleted oil reservoirs have numerous attributes that would make them preferred sites for geological storage of CO₂.

- 1. <u>Established Secure Trap.</u> An oil reservoir has accumulated and holds fluids for millions of years, thus providing:
 - Confidence in the integrity of the reservoir seal
 - Assurance of permanence of the fluid trap

As such, CO₂ injected into an oil reservoir, as long as the injected CO₂ volumes do not exceed the spill point, will likely remain "permanently" trapped and stored.

ATTRIBUTES OF OIL RESERVOIRS (Cont'd)

- **2.** <u>Value-Added Products.</u> In geologically favorable settings, injecting CO₂ into a near-depleted oil reservoir can mobilize and recover significant volumes of additional oil using enhanced oil recovery technology (EOR):
 - This would provide revenues for offsetting some (or all) of the costs of storing CO₂.
 - The U.S. and many other parts of the world have large, mature oil fields with reservoir properties favorable for combining storage of CO₂ with CO₂ enhanced oil recovery.

ATTRIBUTES OF OIL RESERVOIRS (Cont'd)

- **3.** <u>Existing Infrastructure.</u> In many cases, much of the essential requirements and infrastructure (such as wells, surface facilities, land access, mineral rights) already exists for storing CO₂. As such:
 - The initial capital requirements for establishing a CO₂ storage facility would be lower than with an alternative option.
 - The permitting, land disturbance and public acceptance aspects of CO₂ storage would be more favorable in areas already developed and comfortable with injection of fluids into the subsurface.

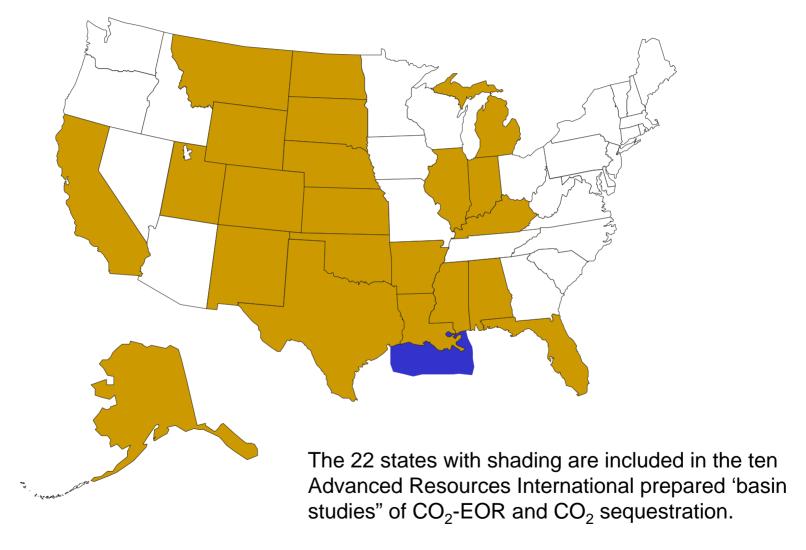
KEY ISSUES FOR INTEGRATING CO₂ STORAGE AND CO₂-EOR

Given the many compelling reasons for using depleted and near-depleted oil reservoirs for CO₂ storage, the presentation addresses:

- 1. What is the set of reservoir and fluid properties that would assist integrating CO₂ storage with CO₂-EOR?
- 2. How might one proceed with assessing CO₂ storage capacity with "value-added" oil production?
- 3. What opportunities exist for expanding and maximizing the CO_2 storage capacity offered by oil reservoirs?

AN INITIAL PERSPECTIVE OF CO₂ STORAGE CAPACITY AND CO₂-EOR POTENTIAL

Our company, Advanced Resources International, recently completed a series of ten "basin studies" that provide an initial perspective on the CO₂ storage potential from combining CO₂ storage and CO₂-EOR. The studies:


- Cover 22 of the oil producing states plus offshore Louisiana,
- Include 1,581 large (>50 MMBbls OOIP) oil reservoirs, accounting for two thirds of U.S. oil production,
- Estimated CO₂ storage capacity using a streamline reservoir simulation and an extensive data base of reservoir properties.

These reports are available on the U.S. Department of Energy's web site at

http://www.fe.doe.gov/programs/oilgas/eor/Ten_Basin-Oriented_CO2-EOR_Assessments.html

U.S. BASINS/REGIONS STUDIED FOR FUTURE OIL RECOVERY AND CO₂ SEQUESTRATION POTENTIAL FROM CO₂-EOR

AN INITIAL PERSPECTIVE OF CO2 STORAGE CAPACITY AND CO₂-EOR POTENTIAL (Cont'd)

The 20 billion metric tons of CO₂ needed, of which about 80% would be stored as part of CO₂-EOR. Currently known natural CO₂ sources hold about 2 billion metric tons.

	Recoverable Oil	Purchased CO ₂ Requirements	
	(Billion Barrels)	(Tcf)	(Billion Tonnes)
Technically Recoverable	89	377	20
Economically Recoverable			
 Mod Oil Price/High Cost CO₂ * 	23	85	4
 High Equivalent Oil Price/High Cost CO₂ ** 	40	153	8
 High Equivalent Oil Price/Low Cost CO₂ *** 	47	188	10

^{* \$30} per bbl oil price, CO₂ cost of \$1.50/Mcf, ROR of 15% before tax.

^{** \$40} per bbl oil price, CO_2 cost of \$2.00/Mcf, ROR of 15% before tax.

^{\$40} per bbl oil price, CO₂ cost of \$0.80/Mcf, ROR of 15% before tax.

EXPANDING CO₂ STORAGE

The volume of CO₂ purchased for (and stored by) CO₂-EOR, as set forth in the ten "basin studies" assumes:

- Primary objective is enhancing economic oil recovery (minimizing costs while optimizing oil production).
- No economic value or benefit is placed on "permanently" storing CO₂.

As such, the above CO_2 requirements and storage volumes represent a <u>minimum</u>. The remainder of the paper examines how and by how much this <u>minimum volume</u> could be expanded.

To examine the "how and by how much" question for expanding CO₂ storage, we use a case study of a large, 340 million barrels of original oil in-place Gulf Coast oil reservoir with a main pay zone (producing oil-water contact), an underlying transition /residual oil zone and a strong bottom water aquifer:

- Main Pay Zone:
 - Depth - 14,000 feet
 - Porosity - 29%
 - Net Pay - 325 feet
 - Initial Pressure - 6,620 psi
- Transition/Residual Oil Zone (130 feet)
- Underlying Saline Aquifer (195 feet*)

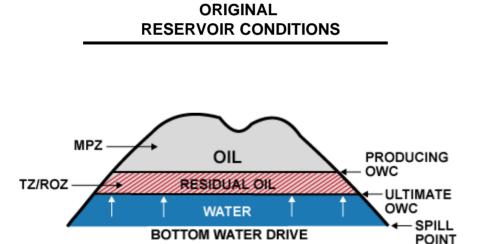
First, this Gulf Coast oil reservoir is produced using conventional (state-of-the-art) CO₂-EOR project design, targeting the main pay zone (MPZ), with vertical wells, and 1 HCPV of CO₂ with a 1:1 WAG (including both purchased and recycled CO₂).

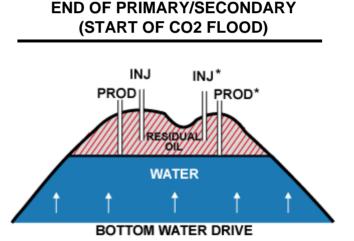
The CO₂ storage and oil recovery results from this "conventional practices" CO₂-EOR design are as follows:

- CO₂ Purchased - 424 Bcf (22.4 million tonnes)
- Oil Recovery - 64 million barrels
- CO₂/Oil Ratio - 6.6
- CO2 Stored* - 350 Bcf (18.6 million tonnes)

 *CO2 storage is 83% of purchased CO2.

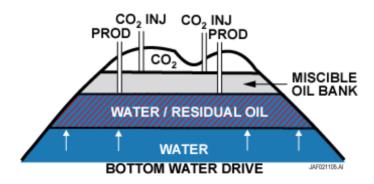
Under this design, only about 13% of the theoretical storage capacity (available pore space) in the reservoir is used for CO₂ storage.


Next, this Gulf Coast oil reservoir is produced using "next generation" CO₂-storage and CO2-EOR project design. This alternative design includes:

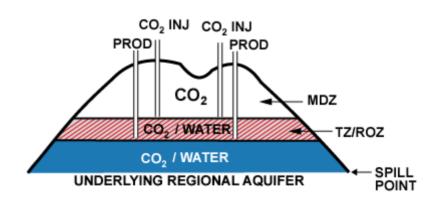

- Targeting the main pay zone plus the transition/residual oil zone and the underlying saline aquifer.
- Conducting a gravity-stable, vertical CO₂ injection with horizontal wells.
- Injecting continuous CO₂ (no water)
- Continuing to inject CO₂ after completion of oil recovery, until maximum allowed reservoir pressure is reached.

Advanced Resources International, Inc.

The objectives of primary/secondary oil production and the conventionally designed CO₂-EOR project are to efficiently produce oil, avoid excessive production of water and minimize the use of purchased CO₂.



^{*}Our case study modified this design by using horizontal wells.



The objectives of the "next generation" CO₂ storage and EOR project are to maximize both CO₂ storage and oil recovery.

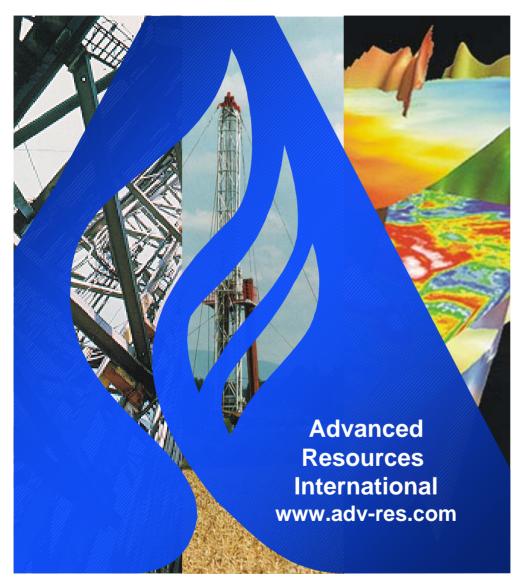
"NEXT GENERATION" TERMINATION CONDITIONS

Compared to the conventional CO₂-EOR design, considerably more CO₂ storage is possible in this reservoir with "next generation" design. An added bonus is that oil recovery and recovery efficiency are also increased.

	MPZ	TZ/ROZ	Aquifer	TOTAL
CO ₂ Stored (Bcf)				
• Bcf	1,150	410	500	2,060
 Million Tonnes 	61	22	26	109
Oil Recovery (million barrels)	112	68		180

Under this scenario, 76% (instead of 13%) of the reservoir's theoretical storage capacity is used for CO₂ storage. Oil recovery is 180 million (instead of 64 million) barrels, providing an additional 116 million barrels.

SUMMARY


Depleted and near-depleted oil reservoirs have numerous attributes that make them attractive for storing CO_2 - - an established, secure trap; "value-added" products; and, existing infrastructure.

Even using today's "state-of-the-art" CO₂-EOR practices, the case study shows that a small portion - - 13% - - of the available CO₂ storage capacity in the oil reservoir is productively used.

Applying "next generation" practices that integrate the storage of CO₂ and oil recovery, a much greater portion - - 76% - - of the available CO₂ storage capacity may become useable.

The next step would be to apply the "lessons learned" from the case study to other basins and oil fields to help expand the CO₂ storage capacity offered by domestic oil reservoirs.

Office Locations
Washington, DC
4501 Fairfax Drive, Suite 910
Arlington, VA 22203
Phone: (703) 528-8420
Fax: (703) 528-0439

Houston, Texas 9801 Westheimer, Suite 805 Houston, TX 77042 Phone: (713) 780-0815 Fax: (713) 780-3819

Denver, Colorado 1401 Seventeen St., Suite 400 Denver, CO 80202 Phone: (303) 295-2722 Fax: (303) 295-2833

Pittsburgh, Pennsylvania 401 Wood St. Suite 900 Pittsburgh PA 15222-1824

Phone: 412-281-6568 Fax: 412-281-6747

